

PADS Job(Perform)データ変換時のご注意

株式会社シーエィディプロタクト

Layout で読み込む事の出来る Job データは Perform Ver6(以降)の物です Ver4 及び Ver3 のデータは、直接読み込む事が出来ません。 Ver4 及び Ver3 等、古いバージョンの Job データを Layout へ読み込む場合は、 PerformVer6(以降)でJobデータを保存しなおし、 Ver6(以降)の Job データとしてから Layout へ読み込んで下さい。

1、内層データの Via サーマル欠落のご注意

Perform の場合、内層サーマルの発生条件は未配線ネットの有無でした。 この為、未配線ネットの消えてしまった Via へ、未配線ネット付の Via を重ねる処理を行い、 サーマルを発生させている箇所もあるかと思います。

未配線が消えた Via と新たに追加した未配線付の Via

未配線付と未配線無しの Via を重ねた状態

この様な処理を行っている場合、Layout 上ではサーマルが欠落してしまいます。 原因は同種の Via が重なっている場合、Layout では1つの Via に変換する為です。 この場合、サーマルを再発生させる必要があります

・サーマル再発生方法

- 1、Layout 上でサーマル再発生させたい Via を選択します
- 2、マウスの右を押し「プロパティ」を選びます、「ビアのプロパテイ」画面が表示されます
- 3、この画面中にある「内層接続サーマル」の部分へチェックを入れ「OK」を押して下さい

以上の作業でサーマルが再発生します。

Layout 上でサーマルが欠落した Via

Layout でのサーマル発生の有無は、未配線ネットの有無では無く、この部分のチェックです。

[「]内層接続サーマル」の部分へチェックを入れサーマルが発生した状態

・サーマル欠落部分の検出方法

サーマル欠落部分は「内装接続チェック」で検出が行えます。

トップメニューより「ツール」__「設計検証」へ入り「内層接続」を選びます。 「設定」を選び「混在内層を設定」のメニューで「サーマル接続状況のみを確認」を選び 「OK」を押して下さい。

この状態で「開始」を押して頂ければ、サーマル欠落部分のチェックが行えます。

「記録計検証		- □ × 」 混在内層を設定	X
Luge 1987年 (U125 L2) 接続されていない内層ピン GND (C162 L2) 接続されていない内層ピン GND (U127 L2) 接続されていない内層ピン・GND (C92 L2) 接続されていない内層ピン・GND		5℃ 7仕) 7仕) 7仕) 7仕) 7世 7世	確認でし ボックスで間隙または接続状況をクリックす 表示します。 ⑤
内容説明: 「注釈(はありません。	 高速回路(g) レポート表示() 内層接続(P) レポートフィル() マテスト・ポイント(T) 確認画面() C 最大 ビアカッント(Q) C 製造関連(F) 	<u>Ф</u> В	キャンセル <u>ヘルプ(H)</u>
	 ラティウム 該計検証(A) ワイヤホンド(B) エラー 4 	Θ	

2、クリアランス設定項目の差異について

Perform ではクリアランスの設定項目が下図のようになっています。 ベタに対するクリアランス設定項目が存在しません。

ベタに対する数値は Track-Track Clearance の部分が兼用されます。

(この Track-Track Clearance は 配線 対 配線 クリアランス設定項目です)

				×		
	Version	7.7				
Database Units Type:	ロミリ	Show Thermal Color:				
Show Current Level Last:		Copper Hatch Mode:		ロノーマル		
Current Net Highlight:	N	Copper Hatch Direction:		ΠHΛ		
Tear Drop Pad Generation:		Copper Hatch Grid:		0.15		
Dot Grid:	2.54	Pad-Pad Clearance:		0.1		
Real Width:	0.1	Pad-Track Clearance:		0.12		
		- Track-Track Clearance:		0.1		
Backup Interval:	15	Drill Hole Clearance:		0.3		
		Drill Oversize:		0		
Max Routing Level:	6					
Old to New Level re-assignment:						
1 1 2 2 3	3 4 4	5 5 6 6	7	8		
9 10 11	12	13 14	15	16		
17 18 19	20	21 22	23	24		
25 26 27	28	29 30				

Perfome のクリアランス設定画面

また、自動ベタ発生時のクリアランスやサーマルの発生方法については 下図の様に別途の設定項目があります。

											×
		SET-UP C	OPPER POUR PARAMETE	ERS							
		Copper Pour H Copper Pour C Minimum Hatch Smoothing Rad	latch Display: Clearance: Area: ius:	☑ 0.25 3 0.000	000						
		-	Thermal Relief								
Pads		Generation	Line Width				Direc	tions			
Through Hole :			0.3	R	□х	S	□х	RF	□х	OF	□х
SMD	:		0.3	R	□х	S	□х	RF	□х	OF	Πx
			·,								

Perfome の自動ベタクリアランス設定画面

対して、Layout では、ベタに対するクリアランスの設定値が追加されています。

Performからデータを変換した場合、ベタに対するクリアランス設定値には、 自動ベタのクリアランス設定値が入力されます。

この為、自動ベタ項目は設定値が同じなので問題ありませんが、

ベタ項目は Poerform 時とは異なり、ベタに対するクリアランス設定値 が適用されます。 (Perform 上で設定された自動ベタのクリアランス設定値)

この為、ベタ項目に関しては、クリアランスチェック時にエラーとして検出される場合があります。

国際規則にフォルト規則					_		-
同ネット(<u>N</u>)	□ 「 能線幅(₩)	8	最小値	推	奖値	最大値	OK OK
全て コーナー(E) ビア			0.1	0.15	2	2	+= 10 1711
<u> ピア 0.115</u>	- 問題			1415			1 11200
SMD 0.115 0.115	A7(1)	「あり2白(丁)」	1 8700	1 18 × K (D)		1 ~ 5(0) 1	削除(E)
				T AND T		1,13101	a. 11 = 9 (11)
/\%F0.115	<u>- BC08KTV</u> ドア(1)	0.1	0.115	-			
	<u>パッド(A)</u>	0.1	0.115	0115	1		
	SMD(M)	0.1	0.115	0115	0115	- 2	
7 m/lb/m)	文字(2)	0.1	10.1	10.1	0.1	-	
EON也(D)	べタ(<u>C</u>)	0.25	0.25	0.25	0.25	0.25	
判ル⇔外形 外形⇔外形	金·版(里)	01	0.1	0.1	0.1	01	
0.2048	トリル(<u>D</u>)	0.1	0.115	0.115	0.115	0	

Layout ではベタに対するクリアランス設定値が個別に用意されています

クリアランスの設定項目は、トップメニューより「設定」__「設計の規則」を選びます。 全体の設定は「デフォルト」__「間隙」で行えますので、この部分の設定値を見直して下さい。 3、テキスト項目の長さが変化する

Perform で作成したデータを Layout へ変換すると、テキスト項目の長さが 変化してしまう場合があります。

この現象は、テキスト文字列の中にスペースが含まれる場合に発生します。 下図1は Perform 上でテキストを入力した物です、 上段「あ」の文字列には真ん中に全角のスペースが1つ入っています、

下段「A」の文字列には真ん中に半角のスペースが1つ入っています。

文字列 入力 > あああああ あああああ				×			
	キャンセル						
あああ	ああ	あ	あ	る	5あ	らむ	フ
							-
AAAAA	AAAAA						
				×			
	キャンセル						

図1、Perfrom でのテキスト入力画面

そして、下図2が Layout へ変換したテキストです。 テキスト文字下に引かれている線は、2D ラインで作画したもので変化がありません。 テキストの文字列は上側の「あ」の文字列が短くなり、 下側の「A」の文字列が、若干ですが長くなっています。 全角スペースは変換後、短くなります 半角スペースは変換後、長くなります

Layout ヘデータ変換後は、スペースを含テキスト文字列の再確認をお願いします。

図2、Layout へ変換したテキスト